Technical data

Series 2800

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions</th>
<th>Laminar air flow</th>
<th>Power consumption kW</th>
<th>Power consumption kW**</th>
<th>Lighting</th>
<th>Approx. weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3028</td>
<td>1.000 x 2.800 x 3.700</td>
<td>600</td>
<td>45.6</td>
<td>5.09</td>
<td>900</td>
<td>215</td>
</tr>
<tr>
<td>1628</td>
<td>1.600 x 2.800 x 3.700</td>
<td>600</td>
<td>65.1</td>
<td>6.06</td>
<td>900</td>
<td>325</td>
</tr>
<tr>
<td>2028</td>
<td>2.000 x 2.800 x 3.700</td>
<td>600</td>
<td>81.6</td>
<td>7.08</td>
<td>900</td>
<td>435</td>
</tr>
<tr>
<td>2628</td>
<td>2.600 x 2.800 x 3.700</td>
<td>600</td>
<td>108.2</td>
<td>8.10</td>
<td>900</td>
<td>545</td>
</tr>
<tr>
<td>3028</td>
<td>3.000 x 2.800 x 3.700</td>
<td>600</td>
<td>134.8</td>
<td>9.13</td>
<td>900</td>
<td>655</td>
</tr>
<tr>
<td>3228</td>
<td>3.200 x 2.800 x 3.700</td>
<td>600</td>
<td>161.3</td>
<td>10.15</td>
<td>900</td>
<td>765</td>
</tr>
</tbody>
</table>

Series 3400

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions</th>
<th>Laminar air flow</th>
<th>Power consumption kW</th>
<th>Power consumption kW**</th>
<th>Lighting</th>
<th>Approx. weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1034</td>
<td>1.000 x 3.600 x 4.700</td>
<td>600</td>
<td>0.496</td>
<td>0.496</td>
<td>600</td>
<td>182</td>
</tr>
<tr>
<td>1634</td>
<td>1.600 x 3.600 x 4.700</td>
<td>600</td>
<td>7.811</td>
<td>7.811</td>
<td>600</td>
<td>362</td>
</tr>
<tr>
<td>2034</td>
<td>2.000 x 3.600 x 4.700</td>
<td>600</td>
<td>9.792</td>
<td>9.792</td>
<td>600</td>
<td>479</td>
</tr>
<tr>
<td>2634</td>
<td>2.600 x 3.600 x 4.700</td>
<td>600</td>
<td>11.729</td>
<td>11.729</td>
<td>600</td>
<td>591</td>
</tr>
<tr>
<td>3034</td>
<td>3.000 x 3.600 x 4.700</td>
<td>600</td>
<td>13.647</td>
<td>13.647</td>
<td>600</td>
<td>703</td>
</tr>
<tr>
<td>3234</td>
<td>3.200 x 3.600 x 4.700</td>
<td>600</td>
<td>15.564</td>
<td>15.564</td>
<td>600</td>
<td>815</td>
</tr>
</tbody>
</table>

Series 4000

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions</th>
<th>Laminar air flow</th>
<th>Power consumption kW</th>
<th>Power consumption kW**</th>
<th>Lighting</th>
<th>Approx. weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1040</td>
<td>1.000 x 4.000 x 5.300</td>
<td>600</td>
<td>5.740</td>
<td>5.740</td>
<td>600</td>
<td>238</td>
</tr>
<tr>
<td>1640</td>
<td>1.600 x 4.000 x 5.300</td>
<td>600</td>
<td>9.216</td>
<td>9.216</td>
<td>600</td>
<td>390</td>
</tr>
<tr>
<td>2040</td>
<td>2.000 x 4.000 x 5.300</td>
<td>600</td>
<td>11.520</td>
<td>11.520</td>
<td>600</td>
<td>528</td>
</tr>
<tr>
<td>2640</td>
<td>2.600 x 4.000 x 5.300</td>
<td>600</td>
<td>14.776</td>
<td>14.776</td>
<td>600</td>
<td>667</td>
</tr>
<tr>
<td>3040</td>
<td>3.000 x 4.000 x 5.300</td>
<td>600</td>
<td>17.280</td>
<td>17.280</td>
<td>600</td>
<td>796</td>
</tr>
<tr>
<td>3240</td>
<td>3.200 x 4.000 x 5.300</td>
<td>600</td>
<td>19.680</td>
<td>19.680</td>
<td>600</td>
<td>925</td>
</tr>
</tbody>
</table>

Available options

A comprehensive range of alternatives, accessories and options enables the Telstar laminar air flow modules to be configured to specific customer requirements.

- Framework can be constructed from epoxy coated mild steel, AISI 304 stainless steel or AISI 316 stainless steel.
- Aluminium or stainless steel micro-perforated grilles or PLF air distribution screens.
- Curtains on the 4 sides of the module (PVC strip or continuous and low static PVC).
- Automatic velocity control.
- Modules prepared for integration into the ceiling of a clean room.
- Control panel integrated in the unit or remotely sited.
- Modules with support legs (with or without lockable casters).
- Modular, easy to install.
- Cadet on the 4 sides of the module (PVC strip or continuous and low static PVC).
- Quality assurance documentation (DS, IQ and OQ).
The equipment can be configured in one of two ways: the operating zone. The filtered air creates an overpressure with regard to the surroundings, ensuring that particulate contamination is kept away from entrains and removes polluting particles and expels them out of the working zone.

The working zone is typically enclosed with transparent plastic strip curtains to provide easy access and excellent process visibility. The zone is illuminated by fluorescent lamps with protective covers. The frame can be made from epoxy powder coated zinctec steel or plated constructed from anodised aluminium (stainless steel or PLF). The HEPA filters are arranged across the lower portion of the air flow modules, which constitute the ceiling of the working zone. Below the filters is a micro-perforated plate that protects them from physical damage and promotes a homogeneous air velocity across the entire laminar flow area.

The high-efficiency EC (electronically commutated) fans, Green Tech and eco-friendly, are statically and dynamically balanced to provide low levels of noise and vibration. A fan speed controller is included in order to maintain a constant flow rate. The control panel can be placed in the module or installed remotely to provide local access. It includes a differential pressure gauge, HEPA filter clogging alarm, lighting controls and flow switches.

The TELSTAR MLAF Series air flow modules use filtration to produce enclosed working areas of clean and sterile laminar flow air.

Product quality

Any number of possible dimensions to suit the space and the process. The module is fitted with two stages of filtration: G-1 synthetic fibre pre-filters of efficiency equivalent to ≤80% (EN779:2012), H14 high-efficiency absolute HEPA 99.995% MPPS (EN779:2012), DOP to readily enable a clean flow area to ISO 5 (EN ISO 14644-1).

The equipment is fitted with two stages of filtration:

- G-1 synthetic fibre pre-filters of efficiency equivalent to ≤80% (EN779:2012)
- H14 high-efficiency absolute HEPA 99.995% MPPS (EN779:2012), DOP to readily enable a clean flow area to ISO 5 (EN ISO 14644-1)

The HEPA filters are arranged across the lower portion of the air flow modules, which constitute the ceiling of the working zone. Below the filters is a micro-perforated plate that protects them from physical damage and promotes a homogeneous air velocity across the entire laminar flow area.

The high-efficiency EC (electronically commutated) fans, Green Tech and eco-friendly, are statically and dynamically balanced to provide low levels of noise and vibration. A fan speed controller is included in order to maintain a constant flow rate.

The equipment can be installed remotely to provide local access. It includes a differential pressure gauge, HEPA filter clogging alarm, lighting controls and flow switches.

The equipment is fitted with two stages of filtration:

- G-1 synthetic fibre pre-filters of efficiency equivalent to ≤80% (EN779:2012)
- H14 high-efficiency absolute HEPA 99.995% MPPS (EN779:2012), DOP to readily enable a clean flow area to ISO 5 (EN ISO 14644-1)

The HEPA filters are arranged across the lower portion of the air flow modules, which constitute the ceiling of the working zone. Below the filters is a micro-perforated plate that protects them from physical damage and promotes a homogeneous air velocity across the entire laminar flow area.

The high-efficiency EC (electronically commutated) fans, Green Tech and eco-friendly, are statically and dynamically balanced to provide low levels of noise and vibration. A fan speed controller is included in order to maintain a constant flow rate.

The control panel can be placed in the module or installed remotely to provide local access. It includes a differential pressure gauge, HEPA filter clogging alarm, lighting controls and flow switches.

The equipment is fitted with two stages of filtration:

- G-1 synthetic fibre pre-filters of efficiency equivalent to ≤80% (EN779:2012)
- H14 high-efficiency absolute HEPA 99.995% MPPS (EN779:2012), DOP to readily enable a clean flow area to ISO 5 (EN ISO 14644-1)

The HEPA filters are arranged across the lower portion of the air flow modules, which constitute the ceiling of the working zone. Below the filters is a micro-perforated plate that protects them from physical damage and promotes a homogeneous air velocity across the entire laminar flow area.

The high-efficiency EC (electronically commutated) fans, Green Tech and eco-friendly, are statically and dynamically balanced to provide low levels of noise and vibration. A fan speed controller is included in order to maintain a constant flow rate.
The equipment can be configured in one of two ways: the operating zone.

The filtered air creates an overpressure with regard to the surroundings, ensuring that particulate contamination is kept away from entrains and removes polluting particles and expels them out of the working zone.

The working zone is typically enclosed with transparent plastic strip curtains to provide easy access and excellent process visibility. The zone is illuminated by fluorescent lamps with protective covers.

The frame can be made from epoxy powder coated zinctec steel or plated constructed from anodised aluminium (stainless steel or PLF screen as option) which protects the filter surface from physical damage and promotes a homogeneous air velocity across the entire laminar flow area.

During manufacturing processes for pharmaceuticals, food, cosmetics, and similar products it is often necessary to control the atmosphere of the operating area within appropriate limits in order to maintain product quality.

The high-efficiency EC (electronically commutated) fans, Green Tech and eco-friendly, are statically and dynamically balanced to provide low levels of noise and vibration. A fan speed controller is also included in order to maintain a constant flow rate.

The equipment is fitted with two stages of filtration:

- G3 synthetic fibre pre-filters of efficiency equivalent to ≤80% (EN779: 2012).
- H14 high-efficiency absolute HEPA 99.995% MPPS (99.999%) DOP is readily able to clean air flows from ISO 5 (EN 1844-1).

The HEPA filters are arranged across the lower portion of the air flow modules, which constitute the ceiling of the working zone. Below the filters is a micro-perforated plate that protects them from physical damage and promotes a homogeneous air velocity across the entire laminar flow area.

The filtered flow from the impulsion unit passes through a perforated micro-perforated plate that protects them from physical damage and promotes a downward laminar flow over the working zone.

The filters is a micro-perforated plate that protects them from physical damage and promotes a uniform flow rate, which retains and removes polluting particles and expels them out of the working zone.

The filtered air creates an overpressure with regard to the surroundings, ensuring that particulate contamination is kept away from the working zone.

The equipment can be configured in one of two ways:

- Hung from the ceiling (standard)
- On support feet (optional)

Design & construction features

Construction

The filtered flow from the impulsion unit passes through a perforated stainless steel AISI 404L/316L for high resistance and durability.

The frame can be made from epoxy powder coated zinctec steel or plated constructed from anodised aluminium (stainless steel or PLF screen as option) which protects the filter surface from physical damage and promotes a homogeneous air velocity across the entire laminar flow area.

Operating principle

Through the controlled impulsion of filtered laminar flow air, a complete vertical sweep of the enclosed area is achieved under the module. The air is displaced from the ceiling to the ground with a unidirectional flow pattern and uniform flow rate, which is maintained with a differential pressure gauge,

The protective device of the impulsion unit are HEPA filters, which ensure a laminar flow area.

The high-efficiency EC (electronically commutated) fans, Green Tech and eco-friendly, are statically and dynamically balanced to provide low levels of noise and vibration. A fan speed controller is also included in order to maintain a constant flow rate.

The equipment is fitted with two stages of filtration:

- G3 synthetic fibre pre-filters of efficiency equivalent to ≤80% (EN779: 2012).
- H14 high-efficiency absolute HEPA 99.995% MPPS (99.999%) DOP is readily able to clean air flows from ISO 5 (EN 1844-1).

The HEPA filters are arranged across the lower portion of the air flow modules, which constitute the ceiling of the working zone. Below the filters is a micro-perforated plate that protects them from physical damage and promotes a homogeneous air velocity across the entire laminar flow area.

The filtered flow from the impulsion unit passes through a perforated micro-perforated plate that protects them from physical damage and promotes a uniform flow rate, which retains and removes polluting particles and expels them out of the working zone.

The filters is a micro-perforated plate that protects them from physical damage and promotes a homogeneous air velocity across the entire laminar flow area.

Modular Design Advantages

The combination of various MLAF modules provides the following key benefits:

- A wide range of possible dimensions to suit at the space and the process.
- Flexibility in design.
- Reduced costs.
- Shortened lead-time.

The combination of various MLAF modules provides the following key benefits:

- A wide range of possible dimensions to suit at the space and the process.
- Flexibility in design.
- Reduced costs.
- Shortened lead-time.
- Comprehensive definition of the equipment.

Technical data

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions</th>
<th>Laminar air flow</th>
<th>Power installed *</th>
<th>Power consumption **</th>
<th>Lighting level</th>
<th>Approx. weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>A 1,000 mm C 1,700 mm D 600 mm</td>
<td>1.440 m³/h</td>
<td>0,21 kW</td>
<td>0,40 m/s</td>
<td>600 lux</td>
<td>463 kg</td>
</tr>
<tr>
<td>1410</td>
<td>A 1,600 mm C 1,700 mm D 600 mm</td>
<td>2.100 m³/h</td>
<td>0,36 kW</td>
<td>0,50 m/s</td>
<td>600 lux</td>
<td>1068 kg</td>
</tr>
<tr>
<td>1610</td>
<td>A 1,800 mm C 1,700 mm D 600 mm</td>
<td>2.680 m³/h</td>
<td>0,42 kW</td>
<td>0,60 m/s</td>
<td>600 lux</td>
<td>1800 kg</td>
</tr>
<tr>
<td>2010</td>
<td>A 2,000 mm C 1,700 mm D 600 mm</td>
<td>3.744 m³/h</td>
<td>0,50 kW</td>
<td>0,75 m/s</td>
<td>600 lux</td>
<td>286 kg</td>
</tr>
<tr>
<td>2610</td>
<td>A 2,200 mm C 1,700 mm D 600 mm</td>
<td>5.184 m³/h</td>
<td>0,60 kW</td>
<td>1,00 m/s</td>
<td>600 lux</td>
<td>515 kg</td>
</tr>
<tr>
<td>3210</td>
<td>A 2,400 mm C 1,700 mm D 600 mm</td>
<td>7.257 m³/h</td>
<td>0,82 kW</td>
<td>1,50 m/s</td>
<td>600 lux</td>
<td>940 kg</td>
</tr>
<tr>
<td>3610</td>
<td>A 2,600 mm C 1,700 mm D 600 mm</td>
<td>9.216 m³/h</td>
<td>1,05 kW</td>
<td>2,00 m/s</td>
<td>600 lux</td>
<td>1324 kg</td>
</tr>
</tbody>
</table>

* Laminar air flow with velocity regulated to 0,40 m/s. **Power consumption regulated to 0,40 m/s.

Comprehensive definition of the equipment.

Shortened lead-time.

Reduced costs.

Flexibility in design.

Automatic velocity control as option

Touch screen as option

Power consumption regulated to 0,40 m/s.

Laminar air flow with velocity regulated to 0,40 m/s.

Technical data

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions</th>
<th>Laminar air flow</th>
<th>Power installed *</th>
<th>Power consumption **</th>
<th>Lighting level</th>
<th>Approx. weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1014</td>
<td>A 1,000 mm C 2,000 mm D 600 mm</td>
<td>2.056 m³/h</td>
<td>0,25 kW</td>
<td>0,40 m/s</td>
<td>600 lux</td>
<td>600 kg</td>
</tr>
<tr>
<td>1414</td>
<td>A 1,600 mm C 2,000 mm D 600 mm</td>
<td>3.225 m³/h</td>
<td>0,51 kW</td>
<td>0,50 m/s</td>
<td>600 lux</td>
<td>1430 kg</td>
</tr>
<tr>
<td>1814</td>
<td>A 2,000 mm C 2,000 mm D 600 mm</td>
<td>4.032 m³/h</td>
<td>0,78 kW</td>
<td>0,60 m/s</td>
<td>600 lux</td>
<td>2490 kg</td>
</tr>
<tr>
<td>2414</td>
<td>A 2,600 mm C 2,000 mm D 600 mm</td>
<td>5.241 m³/h</td>
<td>1,07 kW</td>
<td>0,90 m/s</td>
<td>600 lux</td>
<td>3805 kg</td>
</tr>
<tr>
<td>3014</td>
<td>A 3,000 mm C 2,000 mm D 600 mm</td>
<td>6.940 m³/h</td>
<td>1,57 kW</td>
<td>1,20 m/s</td>
<td>600 lux</td>
<td>5750 kg</td>
</tr>
<tr>
<td>3614</td>
<td>A 3,600 mm C 2,000 mm D 600 mm</td>
<td>9.451 m³/h</td>
<td>2,16 kW</td>
<td>1,50 m/s</td>
<td>600 lux</td>
<td>8450 kg</td>
</tr>
</tbody>
</table>

* Laminar air flow with velocity regulated to 0,40 m/s. **Power consumption regulated to 0,40 m/s.
The equipment can be configured in one of two ways: the operating zone. The filtered air creates an overpressure with regard to the surroundings, ensuring that particulate contamination is kept away from entrains and removes polluting particles and expels them out of the working zone.

Operating principle

Through the controlled impulsion of filtered laminar flow air, a complete vertical sweep of the enclosed area is achieved under the impulsion of filtered laminar flow air. The HEPA filters are arranged across the lower portion of the air flow modules, which constitute the ceiling of the working zone. Below the filters is a micro-perforated plate that protects them from physical damage and promotes a homogeneous air velocity across the entire laminar flow area.

The high-efficiency EC (electronically commutated) fans, Green Tech and eco-friendly, are statically and dynamically balanced to provide low levels of noise and vibration. A fan speed controller is also included in order to maintain a constant flow rate. The control panel can be placed in the module or installed remotely to provide local access. It includes a differential pressure gauge, HEPA filter clogging alarm, lighting controls and flow switches.

Modular Design Advantages

The combination of various MLAF modules provides the following key benefits:

- A wide range of possible dimensions to suit the space and the process.
- Flexibility in design.
- Reduces costs.
- Shortened lead-time.
- Comprehensive definition of the equipment.

Technical data

1000 Series

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions</th>
<th>Laminar air-flow</th>
<th>Power installed</th>
<th>Power consumption</th>
<th>Lighting level</th>
<th>Approx. weight</th>
<th>A B C D Rate installed</th>
<th>consumption level</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>A 1.000</td>
<td>B 1.000</td>
<td>C 1.700</td>
<td>D 500</td>
<td>1.440</td>
<td>3</td>
<td>0,21</td>
<td>600</td>
<td>90</td>
</tr>
<tr>
<td>1410</td>
<td>A 1.600</td>
<td>B 1.000</td>
<td>C 1.700</td>
<td>D 500</td>
<td>2.304</td>
<td>3</td>
<td>0,26</td>
<td>600</td>
<td>108</td>
</tr>
<tr>
<td>2010</td>
<td>A 2.000</td>
<td>B 1.000</td>
<td>C 1.700</td>
<td>D 500</td>
<td>2.880</td>
<td>6</td>
<td>0,42</td>
<td>600</td>
<td>180</td>
</tr>
<tr>
<td>2610</td>
<td>A 2.600</td>
<td>B 1.000</td>
<td>C 1.700</td>
<td>D 500</td>
<td>3.744</td>
<td>6</td>
<td>0,47</td>
<td>600</td>
<td>225</td>
</tr>
<tr>
<td>3010</td>
<td>A 3.000</td>
<td>B 1.000</td>
<td>C 1.700</td>
<td>D 500</td>
<td>4.608</td>
<td>9</td>
<td>0,61</td>
<td>600</td>
<td>275</td>
</tr>
<tr>
<td>3214</td>
<td>A 3.200</td>
<td>B 1.400</td>
<td>C 2.100</td>
<td>D 600</td>
<td>5.088</td>
<td>6</td>
<td>0,53</td>
<td>600</td>
<td>285</td>
</tr>
</tbody>
</table>

1400 Series

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions</th>
<th>Laminar air-flow</th>
<th>Power installed</th>
<th>Power consumption</th>
<th>Lighting level</th>
<th>Approx. weight</th>
<th>A B C D Rate installed</th>
<th>consumption level</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1014</td>
<td>A 1.000</td>
<td>B 1.400</td>
<td>C 2.100</td>
<td>D 500</td>
<td>2.056</td>
<td>3</td>
<td>0,25</td>
<td>600</td>
<td>108</td>
</tr>
<tr>
<td>1414</td>
<td>A 1.600</td>
<td>B 1.400</td>
<td>C 2.100</td>
<td>D 500</td>
<td>3.225</td>
<td>3</td>
<td>0,31</td>
<td>600</td>
<td>163</td>
</tr>
<tr>
<td>2014</td>
<td>A 2.000</td>
<td>B 1.400</td>
<td>C 2.100</td>
<td>D 500</td>
<td>4.032</td>
<td>6</td>
<td>0,49</td>
<td>600</td>
<td>215</td>
</tr>
<tr>
<td>2614</td>
<td>A 2.600</td>
<td>B 1.400</td>
<td>C 2.100</td>
<td>D 500</td>
<td>5.294</td>
<td>9</td>
<td>0,57</td>
<td>600</td>
<td>270</td>
</tr>
<tr>
<td>3014</td>
<td>A 3.000</td>
<td>B 1.400</td>
<td>C 2.100</td>
<td>D 600</td>
<td>6.048</td>
<td>9</td>
<td>0,74</td>
<td>600</td>
<td>325</td>
</tr>
<tr>
<td>3214</td>
<td>A 3.200</td>
<td>B 1.400</td>
<td>C 2.100</td>
<td>D 500</td>
<td>8.451</td>
<td>6</td>
<td>0,96</td>
<td>600</td>
<td>325</td>
</tr>
<tr>
<td>3814</td>
<td>A 3.800</td>
<td>B 1.400</td>
<td>C 2.100</td>
<td>D 500</td>
<td>13.277</td>
<td>9</td>
<td>0,82</td>
<td>600</td>
<td>378</td>
</tr>
</tbody>
</table>

2000 Series

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions</th>
<th>Laminar air-flow</th>
<th>Power installed</th>
<th>Power consumption</th>
<th>Lighting level</th>
<th>Approx. weight</th>
<th>A B C D Rate installed</th>
<th>consumption level</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020</td>
<td>A 1.000</td>
<td>B 2.000</td>
<td>C 2.700</td>
<td>D 500</td>
<td>2.880</td>
<td>3</td>
<td>0,30</td>
<td>600</td>
<td>152</td>
</tr>
<tr>
<td>1420</td>
<td>A 1.600</td>
<td>B 2.000</td>
<td>C 2.700</td>
<td>D 500</td>
<td>4.088</td>
<td>3</td>
<td>0,45</td>
<td>600</td>
<td>199</td>
</tr>
<tr>
<td>2020</td>
<td>A 2.000</td>
<td>B 2.000</td>
<td>C 2.700</td>
<td>D 500</td>
<td>5.784</td>
<td>6</td>
<td>0,60</td>
<td>600</td>
<td>264</td>
</tr>
<tr>
<td>2620</td>
<td>A 2.600</td>
<td>B 2.000</td>
<td>C 2.700</td>
<td>D 500</td>
<td>7.488</td>
<td>9</td>
<td>0,75</td>
<td>600</td>
<td>331</td>
</tr>
<tr>
<td>3020</td>
<td>A 3.000</td>
<td>B 2.000</td>
<td>C 2.700</td>
<td>D 600</td>
<td>8.844</td>
<td>9</td>
<td>0,91</td>
<td>600</td>
<td>396</td>
</tr>
<tr>
<td>3220</td>
<td>A 3.200</td>
<td>B 2.000</td>
<td>C 2.700</td>
<td>D 600</td>
<td>9.216</td>
<td>9</td>
<td>0,90</td>
<td>600</td>
<td>434</td>
</tr>
<tr>
<td>3820</td>
<td>A 3.800</td>
<td>B 2.000</td>
<td>C 2.700</td>
<td>D 500</td>
<td>10.568</td>
<td>9</td>
<td>1,05</td>
<td>600</td>
<td>493</td>
</tr>
</tbody>
</table>
Power consumption regulated to 0.40 m/s.

Laminar air flow with velocity regulated to 0.40 m/s.

Series 3000

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions A x B x C x D (mm)</th>
<th>Laminar air flow Rate (m³/h)</th>
<th>Power consumption kW</th>
<th>Power consumption kW***</th>
<th>Lighting level lux</th>
<th>Approx. weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1034</td>
<td>1.000 3.400 4.700 600</td>
<td>7.811</td>
<td>6</td>
<td>0.06</td>
<td>600</td>
<td>362</td>
</tr>
<tr>
<td>1634</td>
<td>1.600 3.400 4.700 600</td>
<td>17.625</td>
<td>12</td>
<td>1.64</td>
<td>600</td>
<td>841</td>
</tr>
</tbody>
</table>

Series 4000

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions A x B x C x D (mm)</th>
<th>Laminar air flow Rate (m³/h)</th>
<th>Power consumption kW</th>
<th>Power consumption kW***</th>
<th>Lighting level lux</th>
<th>Approx. weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1040</td>
<td>1.000 4.000 5.300 600</td>
<td>9.216</td>
<td>6</td>
<td>0.60</td>
<td>600</td>
<td>264</td>
</tr>
<tr>
<td>1640</td>
<td>1.600 4.000 5.300 600</td>
<td>20.736</td>
<td>18</td>
<td>2.11</td>
<td>600</td>
<td>926</td>
</tr>
</tbody>
</table>

Series 2400

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Outer dimensions A x B x C x D (mm)</th>
<th>Laminar air flow Rate (m³/h)</th>
<th>Power consumption kW</th>
<th>Power consumption kW***</th>
<th>Lighting level lux</th>
<th>Approx. weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>1.000 2.800 3.700 600</td>
<td>4.651</td>
<td>6</td>
<td>0.49</td>
<td>600</td>
<td>215</td>
</tr>
<tr>
<td>1624</td>
<td>1.600 2.800 3.700 600</td>
<td>16.418</td>
<td>12</td>
<td>1.15</td>
<td>600</td>
<td>672</td>
</tr>
</tbody>
</table>

Series 4000 Laminar Air Flow System

- **Available options**
 - A comprehensive range of alternatives, accessories and options enables the Telstar laminar air flow modules to be configured to specific customer requirements.
 - Framework can be constructed from epoxy coated mild steel, ARI 304L, stainless steel or ARI 316L, stainless steel.
 - Aluminium or stainless steel micro-perforated grilles or PLF air distribution screens.
 - Control panel integrated in the unit or remotely sited.
 - Modules prepared for integration into the ceiling of a clean room.
 - Curtains on the 4 sides of the module (PVC strip or continuous and low static PVC).
 - Framework can be constructed from epoxy coated mild steel, AISI 304L stainless steel or AISI 316L stainless steel.
 - Modules with support legs (with or without locked castors).
 - Automatic velocity control.
 - Qualification documentation (DQ, IQ and OQ).
 - Curtains on the 4 sides of the module (PVC strip or continuous and low static PVC).

Telstar Headquarters

- **SPAIN**
 - Headquarters
 - F +34 913 717 791
 - T +34 913 717 790
 - 08042 Madrid
 - Santibáñez de Béjar, 3

- **MALAYSIA**
 - F +66 111 271 3669
 - T +34 937 861 380
 - 08227 Terrassa (Spain)
 - Av. Font i Sagué, 55

- **UNITED KINGDOM**
 - F +44 (0)1924 452 295
 - T +44 (0)1924 455 339
 - WF12 7RF
 - Dewsbury, West Yorkshire
 - Park, Horace Waller VC Parade, Unit 4, Shaw Cross Business Park

- **JAPAN**
 - F +81 3 5220 7270
 - T +81 3 6810 1000
 - Tokyo 100-6419
 - 2-7-3 Marunouchi, Chiyoda-ku, Tokyo Building, Azbil Corporation

- **ITALY**
 - F +39 033 144 0752
 - T +39 031 491 6504
 - 201323 Shanghai
 - Pudong District, Zou Qiao Airport Industrial Park, No. 30 Jin Wen Road, CHINA

- **INDIA**
 - F +86 21 58 092 857
 - T +86 21 58 093 731
 - 201323 Shanghai
 - Pudong District, Zou Qiao Airport Industrial Park, No. 30 Jin Wen Road, CHINA

- **MEXICO**
 - F +1 (215) 826 0222
 - T +1 (215) 826 0770
 - Bristol PA 19007
 - 1504 Grundy’s Lane

- **BANGLADESH**
 - F +88 02 8192078
 - Dhanmondi, Daka 1209
 - Anam Rangs Plaza
 - Suite No. B-4 (4th Floor)

- **MALAYSIA**
 - F +351 214 350 089
 - T +34 937 361 600
 - 2730-055 Barcarena, Lisboa
 - Edificio D-6º Esq Estrada Consiglieri Pedroso, 71

- **UNITED KINGDOM**
 - F +44 (0)1924 452 295
 - T +44 (0)1924 455 339
 - WF12 7RF
 - Dewsbury, West Yorkshire
 - Park, Horace Waller VC Parade, Unit 4, Shaw Cross Business Park

- **JAPAN**
 - F +81 3 5220 7270
 - T +81 3 6810 1000
 - Tokyo 100-6419
 - 2-7-3 Marunouchi, Chiyoda-ku, Tokyo Building, Azbil Corporation

- **ITALY**
 - F +39 033 144 0752
 - T +39 031 491 6504
 - 201323 Shanghai
 - Pudong District, Zou Qiao Airport Industrial Park, No. 30 Jin Wen Road, CHINA

- **INDIA**
 - F +86 21 58 092 857
 - T +86 21 58 093 731
 - 201323 Shanghai
 - Pudong District, Zou Qiao Airport Industrial Park, No. 30 Jin Wen Road, CHINA

- **MEXICO**
 - F +1 (215) 826 0222
 - T +1 (215) 826 0770
 - Bristol PA 19007
 - 1504 Grundy’s Lane

- **BANGLADESH**
 - F +88 02 8192078
 - Dhanmondi, Daka 1209
 - Anam Rangs Plaza
 - Suite No. B-4 (4th Floor)

- **MALAYSIA**
 - F +351 214 350 089
 - T +34 937 361 600
 - 2730-055 Barcarena, Lisboa
 - Edificio D-6º Esq Estrada Consiglieri Pedroso, 71

- **UNITED KINGDOM**
 - F +44 (0)1924 452 295
 - T +44 (0)1924 455 339
 - WF12 7RF
 - Dewsbury, West Yorkshire
 - Park, Horace Waller VC Parade, Unit 4, Shaw Cross Business Park

- **JAPAN**
 - F +81 3 5220 7270
 - T +81 3 6810 1000
 - Tokyo 100-6419
 - 2-7-3 Marunouchi, Chiyoda-ku, Tokyo Building, Azbil Corporation

- **ITALY**
 - F +39 033 144 0752
 - T +39 031 491 6504
 - 201323 Shanghai
 - Pudong District, Zou Qiao Airport Industrial Park, No. 30 Jin Wen Road, CHINA

- **INDIA**
 - F +86 21 58 092 857
 - T +86 21 58 093 731
 - 201323 Shanghai
 - Pudong District, Zou Qiao Airport Industrial Park, No. 30 Jin Wen Road, CHINA

- **MEXICO**
 - F +1 (215) 826 0222
 - T +1 (215) 826 0770
 - Bristol PA 19007
 - 1504 Grundy’s Lane

- **BANGLADESH**
 - F +88 02 8192078
 - Dhanmondi, Daka 1209
 - Anam Rangs Plaza
 - Suite No. B-4 (4th Floor)

- **MALAYSIA**
 - F +351 214 350 089
 - T +34 937 361 600
 - 2730-055 Barcarena, Lisboa
 - Edificio D-6º Esq Estrada Consiglieri Pedroso, 71
Technical Data

Series 3000

<table>
<thead>
<tr>
<th>MODEL</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>Laminar air flow (m³/h)</th>
<th>Power installed (kW)</th>
<th>Power consumption (kW**)</th>
<th>Lighting (lux)</th>
<th>Approx. weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3230</td>
<td>600</td>
<td>3.600</td>
<td>2.800</td>
<td>4.100</td>
<td>600</td>
<td>12</td>
<td>1,15</td>
<td>600</td>
<td>529</td>
</tr>
<tr>
<td>3030</td>
<td>600</td>
<td>3.000</td>
<td>2.800</td>
<td>4.100</td>
<td>600</td>
<td>12</td>
<td>1,03</td>
<td>600</td>
<td>444</td>
</tr>
<tr>
<td>2630</td>
<td>520</td>
<td>2.600</td>
<td>2.800</td>
<td>4.100</td>
<td>600</td>
<td>12</td>
<td>0,91</td>
<td>600</td>
<td>396</td>
</tr>
<tr>
<td>2030</td>
<td>400</td>
<td>2.000</td>
<td>2.800</td>
<td>4.100</td>
<td>600</td>
<td>12</td>
<td>0,66</td>
<td>600</td>
<td>325</td>
</tr>
</tbody>
</table>

Series 4000

<table>
<thead>
<tr>
<th>MODEL</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>Laminar air flow (m³/h)</th>
<th>Power installed (kW)</th>
<th>Power consumption (kW**)</th>
<th>Lighting (lux)</th>
<th>Approx. weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4040</td>
<td>1.000</td>
<td>4.000</td>
<td>5.300</td>
<td>600</td>
<td>20.736</td>
<td>18</td>
<td>2,11</td>
<td>600</td>
<td>926</td>
</tr>
<tr>
<td>3640</td>
<td>3.600</td>
<td>4.000</td>
<td>5.300</td>
<td>600</td>
<td>18.432</td>
<td>12</td>
<td>1,80</td>
<td>600</td>
<td>796</td>
</tr>
<tr>
<td>3240</td>
<td>3.200</td>
<td>4.000</td>
<td>5.300</td>
<td>600</td>
<td>17.280</td>
<td>18</td>
<td>1,81</td>
<td>600</td>
<td>792</td>
</tr>
<tr>
<td>3040</td>
<td>2.600</td>
<td>4.000</td>
<td>5.300</td>
<td>600</td>
<td>14.976</td>
<td>12</td>
<td>1,50</td>
<td>600</td>
<td>662</td>
</tr>
</tbody>
</table>

Available Options

A comprehensive range of alternatives, accessories and options enables the Telstar laminar air flow modules to be configured to specific customer requirements.

- Framework can be constructed from epoxy coated mild steel, AISI 304L stainless steel or AISI 316L stainless steel.
- Modules prepared for integration into the ceiling of a clean room.
- Automatic velocity control.
- Modules with support legs (with or without locked castors).
- Control panel integrated in the unit or remotely sited.
- Aluminium or stainless steel micro-perforated grilles or PLF air distribution screens.
- Framework can be constructed from epoxy coated mild steel, AISI 304L stainless steel or AISI 316L stainless steel.
- Modules prepared for integration into the ceiling of a clean room.
- Automatic velocity control.
- Curtains on the 4-sides of the module (PVC strip or continuous and low static PVC).
- Qualification documentation (DQ, IQ and OQ).

Power consumption regulated to 0,40m/s.

Laminar air flow with velocity regulated to 0,40m/s.

Technical data

Series 3000

Series 4000

MLAF Series Laminar Air Flow System

Technical data

Series 2800

Series 2400

Available options

A comprehensive range of alternatives, accessories and options enables the Telstar laminar air flow modules to be configured to specific customer requirements.

- Framework can be constructed from epoxy coated mild steel, AISI 304L stainless steel or AISI 316L stainless steel.
- Aluminium or stainless steel micro-perforated grilles or PLF air distribution screens.
- Control panel integrated in the unit or remotely sited.
- Modules prepared for integration into the ceiling of a clean room.
- Modules with support legs (with or without locked castors).
- Automatic velocity control.
- Curtains on the 4-sides of the module (PVC strip or continuous and low static PVC).
- Qualification documentation (DQ, IQ and OQ).